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Introduction  

Volatility in equity market has become a 
matter of mutual concern in recent years for 
investors, regulators and brokers. Stock 
return volatility hinders economic 
performance through consumer spending1. 
Stock Return Volatility may also affect 
business investment spending2. Further the 
extreme volatility could disrupt the smooth 
functioning of the financial system and lead 
to structural or regulatory changes.  

Volatility of stock returns in the developed 
countries has been studied extensively. After  

                                                

 

1 Garner A.C., 1988, Has Stock Market Crash Reduced 
Customer Spending? Economic Review, Federal 
Reserve Bank of KanasCity, April, 3-16.

 

2 Gertler, M. and Hubbard, R.G.,1989, Factors in 
Business Fluctuations, Financial Market Volatility, 
Federal Reserve Bank of Kanas City, 33-72.

  

the seminal work of Engle(1982) on 
Autoregressive Conditional 
Heteroscedasticity (ARCH) model on UK 
inflation data and its Generalized form 
GARCH(Generalized ARCH) by Bollerslev 
(1986), much of the empirical work used 
these models and their extensions ( See 
French, Schwert and Stambaugh 1987, 
Akgiray 1989, Schwert, 1990, Chorhay and 
Tourani,1994, Andersen and Bollerslev, 
1998) to model characteristics of financial 
time series.  

Starting with the pioneering work of 
Mandelbrot (1963) and Fama (1965), various 
features of stock returns have been 
extensively documented in the literature 
which are important in modeling stock 
market volatility. It has been found that 
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stock market volatility is time varying and it 
also exhibits positive serial correlation 
(volatility clustering).This implies that 
changes in volatility are non-random. 
Moreover, the volatility of returns can be 
characterized as a long-memory process as it 
tends to persist (Bollerslev, Chou and 
Kroner, 1992). Schwert (1989) agreed with 
this argument. Fama (1965) also found the 
similar evidence. Baillie and Bollerslev 
(1991) observed that the volatility is 
predictable in the sense that it is typically 
higher at the beginning and at the close of 
trading period. Akgiray(1989) found that 
GARCH (1, 1) had better explanatory power 
to predict future volatility in US stock 
market.Poshakwale and Murinde (2001) 
modeled volatility in stock markets of 
Hungary and Poland using daily indexes. 
They found that GARCH(1,1) accounted for 
nonlinearity and volatility clustering. Poon 
and Granger (2003) provided comprehensive 
review on volatility forecasting. They 
examined the methodologies and empirical 
findings of 93 research papers and provided 
syneptic view of the volatility literature on 
forecasting. They found that ARCH and 
GARCH classes of time series models are 
very useful in measuring and forecasting 
volatility.   

There is relatively less empirical research on 
stock return volatility in emerging markets. 
In the Indian Context, Roy and Karmakar 
(1995) focused on the measurement of 
average level of volatility as the standard 
deviation in the Indian Stock Market and 
examined that volatility was highest in the 
year 1992. Goyal (1995) examined the 
nature and trend of the stock return volatility 
in the Indian Stock Market and assessed the 
impact of carry forward facility on the 
level of volatility. Reddy (1997) analyzed 
the establishment of NSE and introduction of 
BSE online trading (BOLT) on the stock 
market volatility as sample standard 

deviation. Kaur (2002) analyzed the extent 
and pattern of stock market volatility, 
modeled the volatility during 1990-2000 and 
examined the effect of company size, FII, 
day of the week effect on volatility. Ajay 
Pandey (2002) modeled the volatility of S & 
P CNX Nifty using different class of 
estimators and ARCH /GARCH class of 
models.  

Balaban, Bayar and Faff (2002) investigated 
the forecasting performance of both ARCH-
type models and non-ARCH models applied 
to 14 different countries. They observed that 
non-ARCH models usually produce better 
forecast than ARCH type models. Finally, 
Exponential GARCH is the best among 
ARCH-type models. Pan and Zhang (2006) 
use Moving Average, Historical Mean, 
Random Walk, GARCH, GJR-GARCH, 
EGARCH and APARCH to forecast 
volatility of two Chinese Stock Market 
indices; Shanghai and Shenzhen. The study 
found that Among GARCH models, GJR-
GARCH and EGARCH outperforms other 
ARCH models for Shenzhen stock market. 
Magnus and Fosu (2007) employed Random 
Walk, GARCH(1,1), TGARCH(1,1) and 
EGARCH(1,1) to forecast Ghana Stock 
Exhange. GARCH(1,1) provides the best 
forecast according to three different criterias 
out of four. On the other hand, EGARCH and 
Random Walk produces the worst forecast.  

Foregoing discussion suggests that the 
modeling of the stock markets volatility and 
its forecasting is of great importance to 
academics, policy makers, and financial 
markets participants. Predicting volatility 
might enable one to take risk-free decision 
making including portfolio selection and 
option pricing. High levels of volatility in a 
stock market can lead to a general erosion of 
investors confidence and an outflow of 
capital from stock markets, volatility has 
become a matter of mutual concern for 
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government, management, brokers and 
investors. It is therefore necessary for us to 
explore stock market volatility and also 
identify a model that gives better prediction. 
The rest of the paper is organized as follows. 
Section II provides research design used in 
the study. Empirical results are discussed in 
Section III. Section IV summarizes.  

Research Design  

Period of study  

We collected data on daily closing price 
Banking index namely Sensex of Bombay 
Stock Exchange from January 1, 2009to 
June 24, 2014.It consists of 1359 
observations. Banking sector reforms such as 
fall in interest rates, and enactment of 
Securitization Bill have given a major fillip 
to Indian banking industry. These 
developments have significantly impacted 
the performance of bank stocks and bank 
stocks have emerged as a major segment in 
the equity markets.   

The period of the study is the most recent 
one. These stock markets have become 
increasingly integrated.The trades between 
countries have increased. They are playing 
an important role in the world economy. 
These might have influenced the 
behaviorand the pattern of volatility and 
therefore it will be instructive to study 
volatility in this period.  

Methodology  

Daily returns are identified as the difference 
in the natural logarithm of the closing index 
value for the two consecutive trading days.  
Volatility is defined as;  

n

t
t RRn

1

2)(1/1

 

Equation 1 

where 
_

R = Average return(logarithmic 
difference) in the sample.  

In comparing the performance of linear 
model with its nonlinear counterparts, we 
first used ARIMA3 models. Nelson (1990b) 
explains that the specification of mean 
equation bears a little impact on ARCH 
models when estimated in continuous time. 
Several studies recommend that the results 
can be extended to discrete time. We follow 
a classical approach of assuming the first 
order autoregressive structure for conditional 
mean as follows: 

ttt RaaR 110  Equation 2  

where tR is a stock return, 110 tRaa  is a 

conditional mean and t is the error term in 

period t. The error term is further defined as:  

ttt

   

Equation 3  

where t is white noise process that is 

independent of past realizations of it . It 

has zero mean and standard deviation of one. 
In the context of Box and Jenkins (1976), the 
series should be stationary before ARIMA 
models are used. Therefore, Augmented 
Dickey Fuller test (ADF) is used to test for 
stationarity of the return series.It is a test for 
detecting the presence of stationarity in the 
series. The early and pioneering work on 
testing for a unit root in time series was done 
by Dickey and Fuller (1979 and 1981).If the 
variables in the regression model are not 
stationary, then it can be shown that the 
standard assumptions for asymptotic analysis 
                                                

 

3

 

A process that combines Autoregressive process 
(AR) and Moving Average terms (MA) terms. AR 
process where the present observations depend on 
the previous observations and MA is a weighted 
average of the present and the recent past 
observations of a process.
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will not be valid. ADF tests for a unit root in 
the univariate representation of time series. 
For a return series Rt, the ADF test consists 
of a regression of the first difference of the 
series against the series lagged k times as 
follows: 

tit

p

i
itt rrr

1
1 Equation 4    

)ln(;1 ttttt Rrrrr

  

The null hypothesis is H0: 0

 

and 
H1: 1. The acceptance of null hypothesis 
implies nonstationarity.We can transform the 
nonstationary time series to stationary time 
series either by differencing or by 
detrending. The transformation depends 
upon whether the series is difference 
stationary or trend stationary.  

One needs to specify the form of the second 
moment, variance, 2

t for estimation. ARCH 

and GARCH models assume conditional 
heteroscedasticity with homoscedastic 
unconditional error variance. That is, the 
changes in variance are a function of the 
realizations of preceding errors and these 
changes represent temporary and random 
departure from a constant unconditional 
variance.   

The advantage of GARCH model is that it 
captures the tendency in financial data for 
volatility clustering. It, therefore, enables us 
to make the connection between information 
and volatility explicit since any change in 
the rate of information arrival to the market 
will change the volatility in the market. In 
empirical applications, it is often difficult to 
estimate models with large number of 
parameters, say ARCH (q). To circumvent 
this problem, Bollerslev (1986) proposed  
GARCH (p, q) models. The conditional 
variance of the GARCH (p,q) process is 
specified as 

it

p

i
ijt

q

j
jt hh

1

2

1
0 Equation 5  

with  0>0, 1, 2, . q 0 and 1, 2, 

3, , p 0 to ensure that conditional 
variance is positive. In GARCH process, 
unexpected returns of the same magnitude 
(irrespective of their sign) produce same 
amount of volatility. The large GARCH lag 
coefficients i indicate that shocks to 
conditional variance takes a long time to die 
out, so volatility is persistent. Large 
GARCH error coefficient j  meansthat 
volatility reacts quite intensely to market 
movements and so if j  isrelatively 
highand i is relativelylow, then volatilities 
tend to be spiky . If ( + ) is close to unity, 
then a shock at time t will persist for many 
future periods. A high value of it implies a 
long memory.   

EGARCH Model  

GARCH models successfully capture thick 
tailed returns, and volatility clustering, but 
they are not well suited to capture the 
leverage effect since the conditional 

variance is a function only of the magnitudes 
of the lagged residuals and not their signs. 
In the exponential GARCH (EGARCH) 

model of Nelson (1991) 2
t depends upon 

the size and the sign of lagged residuals. The 
specification for the conditional variance is: 

ht
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Equation 6  

Note that the left-hand side is the log of the 
conditional variance.   This implies that the 
leverage effect is exponential, rather than 
quadratic, and that forecasts of the 
conditional variance are guaranteed to be 
nonnegative thus eliminating the need for 
parameter restrictions to impose non-
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negativity as in the case of ARCH and 
GARCH models. The presence of leverage 
effects can be tested by the hypothesis that 

.0h  The impact is asymmetric if   h 0.  

TGARCH Model  

In ARCH / GARCH models both positive 
and negative shocks of same magnitude will 
have exactly same effect in the volatility of 
the series. T-GARCH model helps in 
overcoming this restriction. TARCH or 
Threshold GARCH model was introduced 
independently by Zakoin (1994) and 
Glosten, Jaganathan and Runkle (1993). The 
generalized specification for the conditional 
variance is given by:  

htht
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Equation 7  

Where 1td  if 0t  and zero otherwise. 

In this model, good news, ,0it

 

and bad 

news, ,0it

 

have differential effect on 

the conditional variance; good news has an 
impact of ,i

 

while bad news has an impact 

of  .ii

 

If 0i , bad news increases 

volatility, and we say that there is a leverage 
effect for the i-th order. If i 0, the news 

impact is asymmetric. The main target of 
this model is to capture asymmetries in 
terms of positive and negative shocks.   

Forecasting Evaluation  

Root mean squared error (RMSE), mean 
absolute error (MAE), mean absolute 
percentage error (MAPE) and Theil 
inequality coefficient (TIC) are employed to 
measure the accuracy of the forecasting 
models. 

RMSE = 
182
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Where ta , is the actual volatility and tf , is 

the forecasted volatility. The model with 
better forecasting power has lower values of 
all the above measures compare to other 
models.  

Empirical results  

The descriptive statistics for the return series 
include mean, standard deviation, skewness, 
kurtosis,Jarque-Bera and Ljung Box. ARCH-
LM statistics are also exhibited in the Table 
1.   

Table 1: Descriptive Statistics of Daily Returns  

Statistic Sensex 
Mean 0.00071 
Standard deviation 0.01342 
Skewness 1.14196 
Kurtosis 18.95906 
Jarque-Bera Statistics 14706.5(0.000)

 

Q2(12) 62.96(0.000)    
ARCH LM statistics ( at Lag =1) 1.09(0.29) 
ARCH LM statistics  
( at Lag =5) 

11.59( 0.041) 
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Notes:ARCH LM statistic is the Lagrange 
multiplier test statistic for the presence of 
ARCH effect. Under null hypothesis of no 
heteroscedasticity, it is distributed as 

)(2 k .Q2(K) is the Ljung Box statistic 
identifying the presence of autocorrelation in 
the squared returns. Under the null 
hypothesis of no autocorrelation, it is 
distributed as )(2 k .  

The mean returns for all the stock indices are 
very close to zero indicating that the series 
are mean reverting. The return distribution is 
negatively skewed, indicating that the 
distribution is non-symmetric. Large value 
of Kurtosis suggests that the underlying data 
are leptokurtic or thick tailed and sharply 
peaked about the mean when compared with 
the normal distribution. Since GARCH 
model can feature this property of 
leptokurtosis evidence in the data.  

The Jarque-Bera4 statistics calculated and 
reported in the Table-1 to test the 
assumption of normality. The results show 
that the null hypothesis of normality in case 
of both the stock markets is rejected.    

The Ljung-Box LB2 (12) statistical values of 
all the series respectively rejects 
significantly the zero correlation null 
hypothesis. It suggests that there is a 
clustering of variance. Thus, the distribution 
of square returns depends on current square 
returns as well as several periods square 
returns, which will result in volatility 
clustering.   

Stationarity condition of the Sensexdaily 
return series were tested by Augmented 
Dickey-Fuller Test (ADF). The results of 
this test are reported in the Table2. 

                                                

  

4 The B-J teat statistic is T[skewness2/6+(kurtosis-
3)2/24].

 
Table.2 Unit Root Testing of Daily Returns 
of Sensex  

Augmented Dickey-Fuller Test     

Mackinnon 

 
Null 

Hypothesis 
Test statistics 

Asymptotic 
Critical 
value  Presence of 

Unit root 
Level 

First 
Difference 

@ 1% level 

  

Sensex    

Intercept 
-2.26 
(0.19) 

-34.60 
(0.00) 

-3.44  

Trend 
&Intercept 

-2.55 
(0.30) 

-34.59 
(0.00) 

-3.97  

Trend 
coefficient 

 0.00 
(0.18) 

-0.00 
(0.62)   

None 
1.89 

(0.98) 
-34.52 
(0.00) 

-2.57  

 

ADF statistics in level series shows presence 
of unit root in the stock marketsas their 
Mackinnon s value do not exceed the critical 
value at 1% level. It suggests that the price 
series is nonstationary. The trend 
coefficients of the series isstatistically 
insignificant suggesting absence of any trend 
in stock market. It is, therefore, necessary to 
transform the series to make it stationary by 
taking its first difference. ADF statistics 
reported in the Table 2 show that the null 
hypothesis of a unit root is rejected. The 
absolute computed values for the index is 
higher than the MacKinnon critical value at 
1% level. Thus, the results of the indices 
show that the first difference series is 
stationary.  

To test for heteroscedasticity, the ARCH-
LM test is applied to the series. The results 
are reported in Table 1. The ARCH-LM test 
at lag length 1 and 5 indicate presence of 
ARCH effect in the residuals in both the 
stock markets. It implies clustering of 
volatility where large changes tend to be 
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followed by large changes, of either sign and 
small changes tend to be followed by small 
changes (Engle,1982 and Bollerslev, 1986). 
The Conditional volatility of returns may not 
only be dependent on the magnitude of error 
terms but also on its sign. We checked for 
asymmetry in both the stock markets using 
EGARCH and TARCH models. The results 
are reported in Table 3.  

Table.3  Coefficients of Asymmetric Models  

Sensex 

Coeffiecients 
EGARC
H(1,1) 

TARCH(
1,1) 

0 
-0.5952 
(0.000) 

0.0000 
(0.000) 

1 
0.2070(0.

000) 
0.0396 
(0.000) 

1 
0.9726 
(0.000) 

0.8792 
(0.000) 

1+ 1     

 

-0.0908 
(0.005)   

(RESID(-1)^2)* 
RESID(-1)<0)   

0.1262 
(0.005) 

SQRT(GARCH)     

Log liklihood 7620.655 7627.577

 

AIC 
-

5.829751 
-

5.835052

 

SBC 
-

5.814026 
-

5.819326

 

ARCH-LM(5) 
Test 

3.207 
(0.668) 

5.132 
(0.40) 

 

The above findings indicate that there is no 
ARCH effect left after estimating the models 
because the results of F-statistics or ARCH-
LM test after fitting the model are 
statistically insignificant as its probability 
value is higher than 0.05. It, therefore, 
suggests that the estimated models are better 
fit.  

Conditional volatility of returns may not 
only be dependent on the magnitude of error 

terms but also on its sign. We checked for 
asymmetry in both the stock markets using 
EGARCH and TARCH models. The results 
are presented in the Table 3.  

The analysis of this EGARCH model 
suggests that all the coefficients are 
significant. Both in case of Sensex (-0.0908) 
and Nifty( -0.1055), the leverage effect term  

is negative and statistically different from 
zero, indicating the existence of leverage 
effect in the stock market returns during the 
sample period.   

Similarly, results of TARCH model 
estimation are listed in Table 16. All the 
parameters in the variance equation are 
significant. Most importantly, the leverage 
term ( ), represented by (RESID(-1)^2)* 
RESID(-1)<0) is here greater than zero and 
highly significant. Its values are 0.1262 for 
Sensex and 0.1339 for Nifty. This reinforces 
the assumption that negative and positive 
shocks have different impact on the volatility 
of daily returns. Here good news has an 
impact of 1 = 0.0396and0.0407 in Sensex of 
BSE and Nifty of NSE stock Markets, while 
the bad news has an impact of 1 

whichare equal to 0.1658 and 0.1746 for 
Sensex and Nifty respectively. Thus, it can 
be said that negative or bad news creates 
greater volatility than positive or good news 
in both the stock markets. Now, we test the 
all models to check their forecasting 
accuracy. The results are reported in Table 4.  

Table.4 Volatility Forecasting Evaluation  

Model RMSE

 

MAE MAPE TIC 
GARCH 
(1,1) 

1.217 0.9302

 

0.0000016

 

0.5017

 

EGARCH 
(1,1) 

1.614 1.432 0.0000025

 

0.5182

 

GJR-
GARCH 
(1,1) 

2.871 1.497 0.0000026

 

0.5235
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Table 2 gives the actual forecast error 
statistics for each model. In the case of 
RMSE, exponential GARCH provides the 
best volatility forecast. If we look at MAE 
and MAPE, GARCH(1,1) models provide 
better forecasting than other models.  

The Theil Inequality Coefficient (TIC) is a 
scale invariant measure that always lies 
between Zero and one, where Zero indicates 
a perfect fit. Looking at this coefficient we 
can say that GARCH(1,1) model is the best 
forecasting model. It is interesting to note 
that Exponential and Threshold GARCH do 
not provide better forecast than GARCH 
model. All the forecasting measures hints at 
GARCH(1,1) model for better forecasting of 
conditional volatility.  

The volatility in the Sensex exhibits the 
persistence of volatility, mean reverting 
behavior and volatility clustering. Various 
diagnostic tests indicate volatility clustering 
and the response to news arrival is 
asymmetrical, meaning that impact of good 
and bad news is not the same. By the 
application of asymmetrical GARCH models 
like EGARCH and TARCH, we conclude 
that there is a presence of leverage effect in 
both the stock markets in India. These 
models suggest that the volatility appears to 
be more when price decline than when price 
increases.   

We employed three different models to 
forecast volatility; GARCH(1,1), 
EGARCH(1,1) and             GJR-
GARCH(1,1). We used RMSE. MAE, 
MAPE and TIC to check forecasting 
accuracy. Our results indicate that GARCH 
(1,1) is the best forecasting model.  
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